(c) Prof. Dr. Edgar Seemann
Hochschule Furtwangen

Der Einheitskreis

\[ \frac{\pi}{2}\equiv 90^\circ \]
\[ \pi\equiv 180^\circ \]
\[ \frac{3}{2}\pi\equiv 270^\circ \]
\[ 2\pi\equiv 360^\circ \]

Rechtwinkliges Dreieck (grĂ¼n)

\( \sin{\alpha}=\frac{\textrm{Gegenkathete}}{\textrm{Hypotenuse}} \) \( =\frac{y}{r} \) \( =\frac{y}{1} \) \( =y \)
\( \cos{\alpha}=\frac{\textrm{Ankathete}}{\textrm{Hypotenuse}} \) \( =\frac{x}{r}=\frac{x}{1}=x \)

Sinus/Cosinus Werte

\[ \begin{eqnarray} \sin{0^\circ} &=& \sin{0} &=& \frac{1}{2}\sqrt{0} &=& 0 &=& \cos{90^\circ}\\ \sin{30^\circ} &=& \sin{\frac{\pi}{6}} &=& \frac{1}{2}\sqrt{1} &=&\frac{1}{2} &=& \cos{60^\circ}\\ \sin{45^\circ} &=& \sin{\frac{\pi}{4}} &=& \frac{1}{2}\sqrt{2} &=& 0.707\ldots &=& \cos{45^\circ} \\ \sin{60^\circ} &=& \sin{\frac{\pi}{3}} &=& \frac{1}{2}\sqrt{3} &=& 0.866\ldots &=& \cos{30^\circ}\\ \sin{90^\circ} &=& \sin{\frac{\pi}{2}} &=& \frac{1}{2}\sqrt{4} &=& 1 &=& \cos{0^\circ}\\ \end{eqnarray} \] \[ \sin{\alpha} = \cos{(90^\circ-\alpha)} \]